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Abstract—As Cloud computing emerges as a dominant
paradigm in distributed systems, it is important to fully under-
stand the underlying technologies that make Clouds possible. One
technology, and perhaps the most important, is virtualization.
Recently virtualization, through the use of hypervisors, has
become widely used and well understood by many. However, there
are a large spread of different hypervisors, each with their own
advantages and disadvantages. This paper provides an in-depth
analysis of some of today’s commonly accepted virtualization
technologies from feature comparison to performance analysis,
focusing on the applicability to High Performance Computing
environments using FutureGrid resources. The results indicate
virtualization sometimes introduces slight performance impacts
depending on the hypervisor type, however the benefits of such
technologies are profound and not all virtualization technologies
are equal. From our experience, the KVM hypervisor is the
optimal choice for supporting HPC applications within a Cloud
infrastructure.

I. INTRODUCTION

Cloud computing [1] is one of the most explosively expand-

ing technologies in the computing industry today. A Cloud

computing implementation typically enables users to migrate

their data and computation to a remote location with some

varying impact on system performance [2]. This provides a

number of benefits which could not otherwise be achieved.

Such benefits include:

• Scalability - Clouds are designed to deliver as much

computing power as any user needs. While in practice

the underlying infrastructure is not infinite, the cloud re-

sources are projected to ease the developer’s dependence

on any specific hardware.

• Quality of Service (QoS) - Unlike standard data cen-

ters and advanced computing resources, a well-designed

Cloud can project a much higher QoS than traditionally

possible. This is due to the lack of dependence on

specific hardware, so any physical machine failures can

be mitigated without the prerequisite user awareness.

• Customization - Within a Cloud, the user can utilize

customized tools and services to meet their needs. This

can be to utilize the latest library, toolkit, or to support

legacy code within new infrastructure.

• Cost Effectiveness - Users find only the hardware required

for each project. This reduces the risk for institutions

potentially want build a scalable system, thus providing

greater flexibility, since the user is only paying for needed

infrastructure while maintaining the option to increase

services as needed in the future.

• Simplified Access Interfaces - Whether using a specific

application, a set of tools or Web services, Clouds pro-

vide access to a potentially vast amount of computing

resources in an easy and user-centric way.

While Cloud computing has been driven from the start

predominantly by the industry through Amazon [3], Google

[4] and Microsoft [5], a shift is also occurring within the

academic setting as well. Due to the many benefits, Cloud

computing is becoming immersed in the area of High Perfor-

mance Computing (HPC), specifically with the deployment of

scientific clouds [6] and virtualized clusters [7].
There are a number of underlying technologies, services,

and infrastructure-level configurations that make Cloud com-

puting possible. One of the most important technologies is vir-

tualization. Virtualization, in its simplest form, is a mechanism

to abstract the hardware and system resources from a given

Operating System. This is typically performed within a Cloud

environment across a large set of servers using a Hypervisor

or Virtual Machine Monitor (VMM), which lies in between

the hardware and the OS. From the hypervisor, one or more

virtualized OSs can be started concurrently as seen in Figure

1, leading to one of the key advantages of Cloud computing.

This, along with the advent of multi-core processors, allows

for a consolidation of resources within any data center. From

the hypervisor level, Cloud computing middleware is deployed

atop the virtualization technologies to exploit this capability

to its maximum potential while still maintaining a given QoS

and utility to users.
The rest of this paper is as follows: First, we look at what

virtualization is, and what current technologies currently exist

within the mainstream market. Next we discuss previous work

related to virtualization and take an in-depth look at the fea-

tures provided by each hypervisor. We follow this by outlining

an experimental setup to evaluate a set of today’s hypervisors

on a novel Cloud test-bed architecture. Then, we look at

performance benchmarks which help explain the utility of each

hypervisor and the feasibility within an HPC environment.

We conclude with our final thoughts and recommendations

for using virtualization in Clouds for HPC.

II. RELATED RESEARCH

While the use of virtualization technologies has increased

dramatically in the past few years, virtualization is not specific
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to the recent advent of Cloud computing. IBM originally

pioneered the concept of virtualization in the 1960’s with the

M44/44X systems [8]. It has only recently been reintroduced

for general use on x86 platforms. Today there are a number of

public Clouds that offer IaaS through the use of virtualization

technologies. The Amazon Elastic Compute Cloud (EC2) [9] is

probably the most popular Cloud and is used extensively in the

IT industry to this day. Nimbus [10], [11] and Eucalyptus [12]

are popular private IaaS platforms in both the scientific and

industrial communities. Nimbus, originating from the concept

of deploying virtual workspaces on top of existing Grid infras-

tructure using Globus, has pioneered scientific Clouds since its

inception. Eucalyptus has historically focused on providing an

exact EC2 environment as a private cloud to enable users to

build an EC2-like cloud using their own internal resources.

Other scientific Cloud specific projects exist such as OpenNeb-

ula [13], In-VIGO [14], and Cluster-on-Demand [15], all of

which leverage one or more hypervisors to provide computing

infrastructure on demand. In recent history, OpenStack [16]

has also come to light from a joint collaboration between

NASA and Rackspace which also provide compute and storage

resources in the form of a Cloud.

While there are currently a number of virtualization tech-

nologies available today, the virtualization technique of choice

for most open platforms over the past 5 years has typi-

cally been the Xen hypervisor [17]. However more recently

VMWare ESX [18] 1, Oracle VirtualBox [19] and the Kernel-

based Virtual Machine (KVM) [20] are becoming more com-

monplace. As these look to be the most popular and feature-

rich of al virtualization technologies, we look to evaluate

1Due to the restrictions in VMWare’s licensing agreement, benchmark
results are unavailable.

all four to the fullest extent possible. There are however,

numerious other virtualizaton technologies also available, in-

cluding Microsoft’s Hyper-V [21], Parallels Virtuozzo [22],

QEMU [23], OpenVZ [24], Oracle VM [25], and many others.

However, these virtualization technologies have yet to seen

widespread deployment within the HPC community, at least

in their current form, so they have been placed outside the

scope of this work.

In recent history there have actually been a number of

comparisons related to virtualization technologies and Clouds.

The first performance analysis of various hypervisors started

with, unsurprisingly, the hypervisor vendors themselves.

VMWare published their performance analysis in [26] as did

the Xen developers in an their first paper [17]. The Xen paper

compares Xen, XenoLinux, and VMWare across a number

of SPEC and normalized benchmarks, resulting in a conflict

between the two works. From here, a number of more unbiased

reports originated, concentrating on server consolidation and

web application performance [18], [27], [28] with fruitful

yet sometimes incompatible results. A feature base survey

on virtualization technologies [29] also illustrates the wide

variety of hypervisors that currently exist. Furthermore, there

has been some investigation into the performance within HPC,

specifically with InfiniBand performance of Xen [30] and

rather recently with a detailed look at the feasibility of the

Amazon Elastic Compute cloud for HPC applications [31],

however both works concentrate only on a single deployment

rather than a true comparison of technologies.

As these underlying hypervisor and virtualization imple-

mentations have evolved rapidly in recent years along with

virtualization support directly on standard x86 hardware, it is

necessary to carefully and accurately evaluate the performance

implications of each system. Hence, we conducted an inves-

tigation of several virtualization technologies, namely Xen,

KVM, VirtualBox, and in part VMWare. Each hypervisor is

compared alongside one another with bare-metal as a control

and (with the exeption of VMWare) run through a number of

High Performance benchmarking tools.

III. FEATURE COMPARISON

With the wide array of potential choices of virtualization

technologies available, its often difficult for potential users to

identify which platform is best suited for their needs. In order

to simplify this task, we provide a detailed comparison chart

between Xen 3.1, KVM from RHEL5, VirtualBox 3.2 and

VMWWare ESX in Figure 2.

A. Virtualization methods

The first point of investigation is the virtualization method

of each VM. Each hypervisor supports full virtualization,

which is now common practice within most x86 virtualization

deployments today. Xen, originating as a para-virtualized

VMM, still supports both types, however full virtualization

is often preferred as it does not require the manipulation of

the guest kernel in any way. From the Host and Guest CPU

lists, we see that x86 and, more specifically, x86-64/amd64

guests are all universally supported. Xen and KVM both suport
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Fig. 2. A comparison chart between Xen, KVM, VirtualBox, and VMWare ESX

Itanium-64 architectures for full virtualization (due to both

hypervisors dependency on QEMU), and KVM also claims

support for some recent PowerPC architectures. However, we

concern ourselves only with x86-64 features and performance,

as other architectures are out of the scope of this paper. Of the

x86-64 platforms, KVM is the only hypervisor to require either

Intel VT-X or AMD-V instruction sets in order to operate.

VirtualBox and VMWare have internal mechanisms to provide

full virtualization even without the virtualization instruction

sets, and Xen can default back to para-virtualized guests.

Next, we consider the host environments for each system.

As Linux is the primary OS type of choice within HPC

deployments, its key that all hypervisors support Linux as

a guest OS, and also as a host OS. As VMWare ESX is

meant to be a virtualization-only platform, it is built upon

a specially configured Linux/UNIX proprietary OS specific to

its needs. All other hypervisors support Linux as a host OS,

with VirtualBox also supporting Windows, as it was tradi-

tionally targeted for desktop-based virtualization. However, as

each hypervisor uses VT-X or AMD-V instructions, each can

support any modern OS targeted for x86 platforms, including

all variants of Linux, Windows, and UNIX.

While most hypervisors have desirable host and guest OS

support, hardware support within a guest environment varies

drastically. Within the HPC environment, virtual CPU (vCPU)

and maximum VM memory are critical aspects to choosing

the right virtualization technology. In this case, Xen is the

first choice as it supports up to 128 vCPUs and can address

4TB of main memory in 64-bit modes, more than any other.

VirtualBox, on the other hand, supports only 32 vCPUs and

16GB of addressable RAM per guest OS, which may lead

to problems when looking to deploy it on large multicore

systems. KVM also faces an issue with the number of vCPU

supported limited to 16, recent reports indicate it is only a

soft limit [32], so deploying KVM in an SMP environment

may not be a significant hurdle. Furthermore, all hypervisors

provide some 3D acceleration support (at least for OpenGL)

and support live migration across homogeneous nodes, each

with varying levels of success.

Another vital juxtaposition of these virtualization technolo-

gies is the license agreements for its applicability within HPC

deployments. Xen, KVM, and VirtualBox are provided for free

under the GNU Public License (GPL) version 2, so they are

open to use and modification by anyone within the community,

a key feature for many potential users. While VirtualBox

is under GPL, it has recently also offered with additional

features under a more proprietary license dictated by Oracle

since its acquirement from Sun last year. VMWare, on the

other hand, is completely proprietary with an extremely limited

licensing scheme that even prevents the authors from willfully

publishing any performance benchmark data without specific

and prior approval. As such, we have neglected VMWare form

the remainder of this paper. Whether going with a proprietary

or open source hypervisor, support can be acquired (usually

for an additional cost) with ease from each option.

B. Usability

While side by side feature comparison may provide crucial

information about a potential user’s choice of hypervisor, ease

of installation and use are also important features that must

be considered. We will take a look at each hypervisor from

two user perspectives, a systems administrator and normal VM

user.

One of the first things on any system administrator’s mind

on choosing a hypervisor is the installation. For all of these

hypervisors, installation is relatively painless. The FutureGrid

support group found that KVM and VirtualBox were the

easiest to install, as there are a number of supported packages

available and installation only requires the addition of one or

more kernel modules and the support software. Xen, while

still supported in binary form by many Linux distributions, is

actually much more complicated. This is because Xen requires

a full modification to the kernel itself, not just a module.

Loading a new kernel into the boot process may complicate

patching and updating later in the system’s maintenance cycle.

VMWare ESX, on the other hand, is entirely separate from

most other installations. As previously noted, ESX is actually
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a hypervisor and custom UNIX host OS combined, so installa-

tion of ESX is like installing any other OS from scratch. This

may be either desirable or adverse, depending on the system

administrator’s usage of the systems and VMWare’s ability to

provide a secure and patched environment.

While system administrators may be concerned with instal-

lation and maintenance, VM users and Cloud developers are

more concerned with daily usage. The first thing to note about

all of such virtualiation technologies is they are supported (to

some extent) by the libvirt API [33]. Libvirt is commonly

used by many of today’s IaaS Cloud offerings, including

Nimbus, Eucalyptus, OpenNebula and OpenStack. As such,

the choice of hypervisor for Cloud developer’s is less of an

issue, so long as the hypervisor supports the features they

desire. For individual command line usage of each tool, it

varies quite a bit more. Xen does provide their own set of

tools for controlling and monitoring guests, and seem to work

relatively well but do incur a slight learning curve. KVM also

provides its own CLI interface, and while it is often considered

less cumbersome it provides less advanced features directly to

users, such as power management or quick memory adjustment

(however this is subject to personal opinion). One advantage

of KVM is each guest actually runs as a separate process

within the host OS, making it easy for a user to manage

and control the VM inside the host if KVM misbehaves.

VirtualBox, on the other hand, provides the best command

line and graphical user interface. The CLI, is especially well

featured when compared to Xen and KVM as it provides clear,

decisive and well documented commands, something most

HPC users and system administrators alike will appreciate.

VMWare provides a significantly enhanced GUI as well as

a Web-based ActiveX client interface that allows users to

easily operate the VMWare host remotely. In summary, there

is a wide variance of interfaces provided by each hypervisor,

however we recommend Cloud developers to utilize the libvirt

API whenever possible.

IV. EXPERIMENTAL DESIGN

In order to provide an unaltered and unbiased review of

these virtualization technologies for Clouds, we need to outline

a neutral testing environment. To make this possible, we have

chosen to use FutureGrid as our virtualization and cloud test-

bed.

A. The FutureGrid Project

FutureGrid (FG) [34] provides computing capabilities that

enable researchers to tackle complex research challenges re-

lated to the use and security of Grids and Clouds. These

include topics ranging from authentication, authorization,

scheduling, virtualization, middleware design, interface design

and cybersecurity, to the optimization of Grid-enabled and

cloud-enabled computational schemes for researchers in as-

tronomy, chemistry, biology, engineering, atmospheric science

and epidemiology.

The test-bed includes a geographically distributed set of

heterogeneous computing systems, a data management sys-

tem that will hold both metadata and a growing library

of software images necessary for Cloud computing, and a

dedicated network allowing isolated, secure experiments, as

seen in Figure 3. The test-bed supports virtual machine-

based environments, as well as operating systems on native

hardware for experiments aimed at minimizing overhead and

maximizing performance. The project partners are integrating

existing open-source software packages to create an easy-to-

use software environment that supports the instantiation, exe-

cution and recording of grid and cloud computing experiments.
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One of the goals of the project is to understand the behavior

and utility of Cloud computing approaches. However, it is not

clear at this time which of these toolkits will become the

users’ primary choice. FG provides the ability to compare

these frameworks with each other while considering real

scientific applications [35]. Hence, researchers are able to

measure the overhead of cloud technology by requesting linked

experiments on both virtual and bare-metal systems, providing

valuable information that help decide which infrastructure suits

their needs and also helps users that want to transition from

one environment to the other. These interests and research

objectives make the FutureGrid project the perfect match

for this work. During the initial conception of FutureGrid,

Xen was selected as the default hypervisor as it was the

best accepted hypervisor within the community at the time.

However, we expect that the results gleaned from this paper

will have a direct impact on the FutureGrid deployment itself

as the performance of each selected hypervisor is evaluated.

B. Experimental Environment

Currently, one of FutureGrid’s latest resources is the India
system, a 256 CPU IBM iDataPlex machine consisting of

1024 cores, 2048 GB of ram, and 335 TB of storage within

the Indiana University Data Center. Each compute node of

India has two Intel Xeon 5570 quad core CPUs running at

2.93Ghz, 24GBs of Ram, and a QDR InfiniBand connection.

A total of four nodes were allocated directly from India for

these experiments. All were loaded with a fresh installation of

Red Hat Enterprise Linux server 5.5 x86 64 with the 2.6.18-

194.8.1.el5 kernel patched. Three of the four nodes were

installed with different hypervisors; Xen version 3.1, KVM

(build 83), and VirtualBox 3.2.10, and the fourth node was left

as-is to act as a control for bare-metal native performance.
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Each guest virtual machine was also built using Red Hat

EL server 5.5 running an unmodified kernel using full virtual-

ization techniques. All tests were conducted giving the guest

VM 8 cores and 16GB of ram to properly span a compute

node. Each benchmark was run a total of 20 times, with the

results averaged to produce consistent results, unless indicated

otherwise.

C. Benchmarking Setup

As this paper aims to objectively evaluate each virtualization

technology from a side-by-side comparison as well as from a

performance standpoint, the selection of benchmarking appli-

cations is critical.

The performance comparison of each virtual machine is

based on two well known industry standard performance

benchmark suites: HPCC and SPEC. These two benchmark en-

vironments are recognized for their standardized reproducible

results in the HPC community, and the National Science

Foundation (NSF), Department of Energy (DOE), and DARPA

are all sponsors of the HPCC benchmarks. The following

benchmarks provide a means to stress and compare processor,

memory, inter-process communication, network, and overall

performance and throughput of a system. These benchmarks

were selected due to their importance to the HPC community

since they are often directly correlated with overall application

performance [36].

1) HPCC Benchmarks: The HPCC Benchmarks [37], [38]

are an industry standard for performing benchmarks for HPC

systems. The benchmarks are aimed at testing the system

on multiple levels to test their performance. It consists of 7

different tests:

• HPL - The Linpack TPP benchmark measures the floating

point rate of execution for solving a linear system of

equations. This benchmark is perhaps the most important

benchmark within HPC today, as it is the basis of

evaluation for the Top 500 list [39].

• DGEMM - Measures the floating point rate of execution

of double precision real matrix-matrix multiplication.

• STREAM - A simple synthetic benchmark program that

measures sustainable memory bandwidth (in GB/s) and

the corresponding computation rate for simple vector

kernel.

• PTRANS - Parallel matrix transpose exercises the com-

munications where pairs of processors communicate with

each other simultaneously. It is a useful test of the total

communications capacity of the network.

• RandomAccess - Measures the rate of integer random

updates of memory (GUPS).

• FFT - Measures the floating point rate of execution

of double precision complex one-dimensional Discrete

Fourier Transform (DFT).

• Communication bandwidth and latency - A set of tests to

measure latency and bandwidth of a number of simulta-

neous communication patterns; based on b eff (effective

bandwidth benchmark).

This benchmark suite uses each test to stress test the

performance on multiple aspects of the system. It also provides

reproducible results which can be verified by other vendors.

This benchmark is used to create the Top 500 list [39] which

is the list of the current top supercomputers in the world. The

results that are obtained from these benchmarks provide an

unbiased performance analysis of the hypervisors. Our results

provide insight on inter-node PingPong bandwidth, PingPong

latency, and FFT calculation performance.

2) SPEC Benchmarks: The Standard Performance Evalua-

tion Corporation (SPEC) [40], [41] is the other major standard

for evaluation of benchmarking systems. SPEC has several

different testing components that can be utilized to benchmark

a system. For our benchmarking comparison we will use the

SPEC OMP2001 because it appears to represent a vast array of

new and emerging parallel applications while simultaneously

providing a comparison to other SPEC benchmarks. SPEC

OMP continues the SPEC tradition of giving HPC users

the most objective and representative benchmark suite for

measuring the performance of SMP (shared memory multi-

processor) systems.

• The benchmarks are adapted from SPEC CPU2000 and

contributions to its research program.

• The focus is to deliver systems performance to real

scientific and engineering applications.

• The size and runtime reflect the needs of engineers and

researchers to model large complex tasks.

• Two levels of workload characterize the performance of

medium and large sized systems.

• Tools based on the SPEC CPU2000 toolset make these

the easiest ever HPC tests to run.

• These benchmarks place heavy demands on systems and

memory.

V. PERFORMANCE COMPARISON

The goal of this paper is to effectively compare and

contrast the various virtualization technologies, specifically

for supporting HPC-based Clouds. The first set of results

represent the performance of HPCC benchmarks. The mean

value and standard deviation for each benchmark, represented

by error bars, were calculated from the results of 20 runs. The

benchmarking suite was built using the Intel 11.1 compiler,

uses the Intel MPI and MKL runtime libraries, all set with

defaults and no optimizations whatsoever.

We open first with High Performance Linpack (HPL), the

de-facto standard for comparing resources. In Figure 4, we can

see the comparison of Xen, KVM, and Virtual Box compared

to native bare-metal performance. First, we see that native is

capable of around 73.5 Gflops which, with no optimizations,

achieves 75% of the theoretical peak performance. Xen, KVM

and VirtualBox perform at 49.1, 51.8 and 51.3 Gflops, respec-

tively when averaged over 20 runs. However Xen, unlike KVM

and VirtualBox, has a high degree of variance between runs.

This is an interesting phenomenon for two reasons. First, this

may impact performance metrics for other HPC applications

and cause errors and delays between even pleasingly-parallel

applications and add to reducer function delays. Second, this

wide variance breaks a key component of Cloud computing

providing a specific and predefined quality of service. If
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performance can sway as widely as what occurred for Linpack,

then this may have a negative impact on users.

Fig. 4. Linpack performance

Next, we turn to another key benchmark within the HPC

community, Fast Fourier Transforms (FFT). Unlike the syn-

thetic Linpack benchmark, FFT is a specific, purposeful

benchmark which provides results which are often regarded

as more relative to a user’s real-world application than HPL.

From Figure 5, we can see rather distinct results from what

was previously provided by HPL. Looking at Star and Single

FFT, its clear performance across all hypervisors is roughly

equal to bare-metal performance, a good indication that HPC

applications may be well suited for use on VMs. The results

for MPI FFT also show similar results, with the exception of

Xen, which has a decreased performance and high variance

as seen in the HPL benchmark. Our current hypothesis is that

there is an adverse affect of using Intel’s MPI runtime on Xen,

however the investigation is still ongoing.

Fig. 5. Fast Fourier Transform performance

Another useful benchmark illustrative of real-world per-

formance between bare-metal performance and various hy-

pervisors are the ping-pong benchmarks. These benchmarks

measure the bandwidth and latency of passing packets between

multiple CPUs. With this experiment, all ping-pong latencies

are kept within a given node, rather than over the network. This

is done to provide further insight into the CPU and memory

overhead withing each hypervisor. From Figure 6 the intranode

bandwidth performance is uncovered, with some interesting

distinctions between each hypervisor.
First, Xen performs close to native speeds on average,

which is promising for the hypervisor. KVM, on the other

hand, shows consistent overhead proportional to native perfor-

mance across minimum, average, and maximum bandwidth.

VirtualBox, on the other hand, performs well, in fact too

well to the point that raises alarm. While the minimum

and average bandwidths are within native performance, the

maximum bandwidth reported by VirtualBox is significantly

greater than native measurements, with a large variance. After

careful examination, it appears this is due to how VirtualBox

assigns its virtual CPUs. Instead of locking a virtual CPU to

a real CPU, a switch may occur which could benefit on the

off-chance the two CPU’s in communication between a ping-

pong test could in fact be the same physical CPU. The result

would mean the ping-pong packet would remain in cache and

result in a higher perceived bandwidth than normal. While

this effect may be beneficial for this benchmark, it may only

be an illusion towards the real performance gleaned from the

VirtualBox hypervisor.

Fig. 6. Ping Pong bandwidth performance

The latency between each ping-pong is equally useful in

understanding the performance impact of each virtualization

technology. From Figure 7, we see KVM and VirtualBox have

near-native performance; another promising result towards the

utility of hypervisors within HPC systems. Xen, on the other

hand, has extremely high latencies creating a high variance in

the mean latency; the mean of its maximum latency was 3.4,

which is off the chart but printed on the bar itself.
While the HPCC benchmarks provide a comprehensive

view for many HPC applications including Linpack and FFT

using MPI, performance of intra-node SMP applications us-

ing OpenMP is also investigated. Figure 8 illustrates SPEC

OpenMP performance across our selected VMs, as well as

baseline native performance. First, we see that the combined

performance over all 11 applications executed 20 times yields

the native testbed with the best performance at a SPEC score

of 34465. KVM performance comes close with a score of

34384, which is so similar to the native performance that most

users will never notice the difference. Xen and VirtualBox

both perform notably slower with scores of 31824 and 31695,
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Fig. 7. Ping Pong latency performance (lower is better)

respectively, however this is only an 8% performance drop

compared to native speeds.

Fig. 8. Spec OpenMP performance

VI. DISCUSSION

The primary goal of this paper is to evaluate the viability

of virtualization within HPC. After our analysis, the answer

seems to be a resounding ”yes.” However, we also hope to

select the best virtualization technology for such an HPC

environment. In order to do this, we combine the feature

comparison along with the performance results, and evaluate

the potential impact within the FutureGrid testbed.

From a feature standpoint, most of today’s virtualization

technologies fit the bill for at least small scale deployment,

including VMWare. In short, each support Linux x86 64

platforms, use VT-X technology for full virtualization, and

support live migration. Due to VMWare’s limited and costly

licensing, it is immediately out of competition for most HPC

deployments. From a CPU and memory standpoint, Xen seems

to provide the best expandability, supporting up to 128 cpus

and 4TB of addressable RAM. So long as KVM’s vCPU

limit can be extended, it too shows promise as a feature-

full virtualization technology. One of Virtualbox’s greatest

limitations was the 16GB maximum memory allotment for

individual guest VMs, which actually limited us from giving

VMs more memory for our performance benchmarks. If this

can be fixed and Oracle does not move the product into the

proprietary market, VirtualBox may also stand a chance for

deployment in HPC environments.
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Fig. 9. Benchmark rating summary (lower is better)

From the benchmark results previously described, the use

of hypervisors within HPC-based Cloud deployments is mixed

bag. Figure 9 summarizes the results based on a 1-3 rating, 1

being best and 3 being worst. While Linpack performance

seems to take a significant performance impact across all

hypervisors, the more practical FFT benchmarks seem to show

little impact, a notably good sign for virtualization as a whole.

The ping-pong bandwidth and latency benchmarks also seem

to support this theory, with the exception of Xen, who’s

performance continually has wide fluctuations throughout the

majority of the benchmarks. OpenMP performance through the

SPEC OMP benchmarking suite also shows promising results

for the use of hypervisors in general, with KVM taking a clear

lead by almost matching native speeds.

While Xen is typically regarded as the most widely used

hypervisor, especially within academic clouds and grids, it’s

performance lacks considerably when compared to either

KVM or VirtualBox. In particular, Xen’s wide and unex-

plained fluctuations in performance throughout the series of

benchmarks suggests that Xen may not be the best choice

for building a lasting quality of service infrastructure upon.

From Figure 9, KVM rates the best across all performance

benchmarks, making it the optimal choice for general de-

ployment in an HPC environment.Furthermore, it may be

possible to preemptively select the ideal Cloud environment

for applications based on their similarity to the benchmarks

presented in this paper and the variance we measure. We

hope to further investigate this concept through the use of

the FutureGrid experiment management framework at a later

date.

In conclusion, it is the authors’ projection that KVM is the

best overall choice for use within HPC Cloud environments.

KVM’s feature-rich experience and near-native performance

makes it a natural fit for deployment in an environment

where usability and performance are paramount. Within the

FutureGrid project specifically, we hope to deploy the KVM

hypervisor across our Cloud platforms in the near future,

as it offers clear benefits over the current Xen deployment.

Furthermore, we expect these findings to be of great im-

portance to other public and private Cloud deployments, as

system utilization, Quality of Service, operating cost, and

computational efficiency could all be improved through the

careful evaluation of underlying virtualization technologies.
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